《法宝匠师全文阅读冲法宝匠师全集冲(笔趣阁)全本小说网》剧情介绍:你还要闹脾气到什么时候公孙止受的只是皮外伤奈何伤了腿上筋骨行动不便况且他一身内力也几乎耗尽逃是不可能的了只能缓缓坐起身子眼巴巴的望着慕容复嘴中急切的说道慕容公子误会这是误会您想要什么老夫……哦不我都可以给你只求你放过我法宝匠师全文阅读冲法宝匠师全集冲(笔趣阁)全本小说网玄参生地猪肉汤
《法宝匠师全文阅读冲法宝匠师全集冲(笔趣阁)全本小说网》视频说明:好了你先下去吧我不会有事的慕容复语气淡淡的说道2024-09-19 22:54·正又直说事为庆祝公司成立15周年近期乐华特意举办了一场以cosplay为主题的年会命名为造乐一夏多位艺人出席了cosplay表演各具特色当然有几位精神状态可谓极其突出
方源在乔家的蛊仙身上早已经打探出来elasticsearch分词器 character filter ,tokenizer,token filter2023-09-02 18:14·孫攀龍分词器:规范化:normalization字符过滤器:character filter分词器:tokenizer令牌过滤器:token filter无论是内置的分析器(analyzer)还是自定义的分析器(analyzer)都由三种构件块组成的:character filters tokenizers token filters内置的analyzer将这些构建块预先打包到适合不同语言和文本类型的analyzer中Character filters (字符过滤器)字符过滤器以字符流的形式接收原始文本并可以通过添加、删除或更改字符来转换该流举例来说一个字符过滤器可以用来把阿拉伯数字(??????????)转成成Arabic-Latin的等价物(0123456789)一个分析器可能有0个或多个字符过滤器它们按顺序应用(PS:类似Servlet中的过滤器或者拦截器想象一下有一个过滤器链)Tokenizer (分词器)一个分词器接收一个字符流并将其拆分成单个token (通常是单个单词)并输出一个token流例如一个whitespace分词器当它看到空白的时候就会将文本拆分成token它会将文本Quick brown fox!转换为[Quick, brown, fox!](PS:Tokenizer 负责将文本拆分成单个token 这里token就指的就是一个一个的单词就是一段文本被分割成好几部分相当于Java中的字符串的 split )分词器还负责记录每个term的顺序或位置以及该term所表示的原单词的开始和结束字符偏移量(PS:文本被分词后的输出是一个term数组)一个分析器必须只能有一个分词器Token filters (token过滤器)token过滤器接收token流并且可能会添加、删除或更改tokens例如一个lowercase token filter可以将所有的token转成小写stop token filter可以删除常用的单词比如 the synonym token filter可以将同义词引入token流不允许token过滤器更改每个token的位置或字符偏移量一个分析器可能有0个或多个token过滤器它们按顺序应用小结&回顾analyzer(分析器)是一个包这个包由三部分组成分别是:character filters (字符过滤器)、tokenizer(分词器)、token filters(token过滤器)一个analyzer可以有0个或多个character filters一个analyzer有且只能有一个tokenizer一个analyzer可以有0个或多个token filterscharacter filter 是做字符转换的它接收的是文本字符流输出也是字符流tokenizer 是做分词的它接收字符流输出token流(文本拆分后变成一个一个单词这些单词叫token)token filter 是做token过滤的它接收token流输出也是token流由此可见整个analyzer要做的事情就是将文本拆分成单个单词文本 ----> 字符 ----> token1 normalization:文档规范化,提高召回率停用词时态转换大小写同义词语气词#normalizationGET _analyze "text": "Mr. Ma is an excellent teacher", "analyzer": "english"2 字符过滤器(character filter):分词之前的预处理过滤无用字符HTML StripMappingPattern ReplaceHTML Strip##HTML Strip Character Filter###测试数据
I'm so happy!
DELETE my_indexPUT my_index "settings": { "analysis": { "char_filter": { "my_char_filter(自定义的分析器名字)":{ "type":"html_strip", "escaped_tags":["a"] }, "analyzer": "my_analyzer":{ "tokenizer":"keyword", "char_filter":["my_char_filter(自定义的分析器名字)"] } } }}GET my_index/_analyze "analyzer": "my_analyzer", "text": "I'm so happy!
"Mapping##Mapping Character Filter DELETE my_indexPUT my_index "settings": { "analysis": { "char_filter": { "my_char_filter":{ "type":"mapping", "mappings":[ "滚 => *", "垃 => *", "圾 => *" ] }, "analyzer": "my_analyzer":{ "tokenizer":"keyword", "char_filter":["my_char_filter"] } } }}GET my_index/_analyze "analyzer": "my_analyzer", "text": "你就是个垃圾滚"Pattern Replace##Pattern Replace Character Filter #17611001200DELETE my_indexPUT my_index "settings": { "analysis": { "char_filter": { "my_char_filter":{ "type":"pattern_replace", "pattern":"(\\d{3)\\d4(\\d4)", "replacement":"$1****$2" } }, "analyzer": "my_analyzer":{ "tokenizer":"keyword", "char_filter":["my_char_filter"] } } }}GET my_index/_analyze "analyzer": "my_analyzer", "text": "您的手机号是17611001200"3 令牌过滤器(token filter)--停用词、时态转换、大小写转换、同义词转换、语气词处理等比如:has=>have him=>he apples=>apple the/oh/a=>干掉大小写时态停用词同义词语气词#token filterDELETE test_indexPUT /test_index "settings": { "analysis": { "filter": { "my_synonym": { "type": "synonym_graph", "synonyms_path": "analysis/synonym.txt" }, "analyzer": "my_analyzer": { "tokenizer": "ik_max_word", "filter": [ "my_synonym" ] } } }}GET test_index/_analyze "analyzer": "my_analyzer", "text": ["蒙丢丢大G霸道daG"]GET test_index/_analyze "analyzer": "ik_max_word", "text": ["奔驰G级"]近义词匹配DELETE test_indexPUT /test_index "settings": { "analysis": { "filter": { "my_synonym": { "type": "synonym", "synonyms": ["赵,钱,孙,李=>吴","周=>王"] }, "analyzer": "my_analyzer": { "tokenizer": "standard", "filter": [ "my_synonym" ] } } }}GET test_index/_analyze "analyzer": "my_analyzer", "text": ["赵,钱,孙,李","周"]大小写#大小写GET test_index/_analyze "tokenizer": "standard", "filter": ["lowercase"], "text": ["AASD ASDA SDASD ASDASD"]GET test_index/_analyze "tokenizer": "standard", "filter": ["uppercase"], "text": ["asdasd asd asg dsfg gfhjsdf asfdg g"]#长度小于5的转大写GET test_index/_analyze "tokenizer": "standard", "filter": { "type": "condition", "filter":"uppercase", "script": { "source": "token.getTerm().length() < 5" }, "text": ["asdasd asd asg dsfg gfhjsdf asfdg g"]}转小写转大写长度小于5的转大写停用词https://www.elastic.co/guide/en/elasticsearch/reference/7.10/analysis-stop-tokenfilter.html#停用词DELETE test_indexPUT /test_index "settings": { "analysis": { "analyzer": { "my_analyzer自定义名字": { "type": "standard", "stopwords":["me","you"] } } }}GET test_index/_analyze "analyzer": "my_analyzer自定义名字", "text": ["Teacher me and you in the china"]#####返回 teacher and you in the china官方案例:官方支持的 token filterhttps://www.elastic.co/guide/en/elasticsearch/reference/7.10/analysis-stop-tokenfilter.html4 分词器(tokenizer):切词默认分词器:standard(英文切割根据空白切割)中文分词器:ik分词https://www.elastic.co/guide/en/elasticsearch/reference/7.10/analysis-whitespace-tokenizer.html配置内置的分析器内置的分析器不用任何配置就可以直接使用当然默认配置是可以更改的例如standard分析器可以配置为支持停止字列表:curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d' "settings": { "analysis": { "analyzer": { "std_english": { "type": "standard", "stopwords": "_english_" } } }, "mappings": "_doc": { "properties": { "my_text": { "type": "text", "analyzer": "standard", "fields": { "english": { "type": "text", "analyzer": "std_english" } } } } }}'在这个例子中我们基于standard分析器来定义了一个std_englisth分析器同时配置为删除预定义的英语停止词列表后面的mapping中定义了my_text字段用standardmy_text.english用std_english分析器因此下面两个的分词结果会是这样的:curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d' "field": "my_text", "text": "The old brown cow"'curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d' "field": "my_text.english", "text": "The old brown cow"'第一个由于用的standard分析器因此分词的结果是:[ the, old, brown, cow ]第二个用std_english分析的结果是:[ old, brown, cow ]--------------------------Standard Analyzer (默认)---------------------------如果没有特别指定的话standard 是默认的分析器它提供了基于语法的标记化(基于Unicode文本分割算法)适用于大多数语言例如:curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d' "analyzer": "standard", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."'上面例子中那段文本将会输出如下terms:[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog's, bone ]-------------------案例3---------------------标准分析器接受下列参数:max_token_length : 最大token长度默认255stopwords : 预定义的停止词列表如_english_ 或 包含停止词列表的数组默认是 _none_stopwords_path : 包含停止词的文件路径curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d' "settings": { "analysis": { "analyzer": { "my_english_analyzer": { "type": "standard", "max_token_length": 5, "stopwords": "_english_" } } }}'curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d' "analyzer": "my_english_analyzer", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."'以上输出下列terms:[ 2, quick, brown, foxes, jumpe, d, over, lazy, dog's, bone ]---------------------定义--------------------standard分析器由下列两部分组成:TokenizerStandard TokenizerToken FiltersStandard Token FilterLower Case Token FilterStop Token Filter (默认被禁用)你还可以自定义curl -X PUT "localhost:9200/standard_example" -H 'Content-Type: application/json' -d' "settings": { "analysis": { "analyzer": { "rebuilt_standard": { "tokenizer": "standard", "filter": [ "lowercase" ] } } }}'-------------------- Simple Analyzer---------------------------simple 分析器当它遇到只要不是字母的字符就将文本解析成term而且所有的term都是小写的例如:curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d' "analyzer": "simple", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."'输入结果如下:[ the, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]5 常见分词器:standard analyzer:默认分词器中文支持的不理想会逐字拆分keyword分词器不对输入的text内容做热呢和处理而是将整个输入text作为一个tokenpattern tokenizer:以正则匹配分隔符把文本拆分成若干词项simple pattern tokenizer:以正则匹配词项速度比pattern tokenizer快whitespace analyzer:以空白符分隔 Tim_cookie6 自定义分词器:custom analyzerchar_filter:内置或自定义字符过滤器 token filter:内置或自定义token filter tokenizer:内置或自定义分词器分词器(Analyzer)由0个或者多个字符过滤器(Character Filter)1个标记生成器(Tokenizer)0个或者多个标记过滤器(Token Filter)组成说白了就是将一段文本经过处理后输出成单个单个单词PUT custom_analysis "settings":{ "analysis":{ }}#自定义分词器DELETE custom_analysisPUT custom_analysis => or" ] , "html_strip_char_filter": "type":"html_strip", "escaped_tags":["a"] }, "filter": #第三步:令牌(token)过滤器 接收切割好的token流(单词term)并且会添加删除或者更改tokens 如:lowercase token fileter可以把所有token(单词)转成小写stop token filter停用词可以删除常用的单词; synonym token filter 可以将同义词引入token流 "my_stopword": { "type": "stop", "stopwords": [ "is", "in", "the", "a", "at", "for" ] }, "tokenizer": #第2步:分词器切割点切割成一个个单个的token(单词)并输出token流它会将文本Quick brown fox!转换为[Quick, brown, fox!]就是一段文本被分割成好几部分 "my_tokenizer": { "type": "pattern", "pattern": "[ ,.!?]" }, "analyzer": "my_analyzer":{ "type":"custom",#告诉 "char_filter":["my_char_filter","html_strip_char_filter"], "filter":["my_stopword","lowercase"], "tokenizer":"my_tokenizer" } } }}GET custom_analysis/_analyze is ! in the a at for "]------------------------------自义定2---------------------------------------------curl -X PUT "localhost:9200/simple_example" -H 'Content-Type: application/json' -d' "settings": { "analysis": { "analyzer": { "rebuilt_simple": { "tokenizer": "lowercase", "filter": [ ] } } }}'Whitespace Analyzerwhitespace 分析器当它遇到空白字符时就将文本解析成terms示例:curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d' "analyzer": "whitespace", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."'输出结果如下:[ The, 2, QUICK, Brown-Foxes, jumped, over, the, lazy, dog's, bone. ]------------------------------Stop Analyzer-----------------top 分析器 和 simple 分析器很像唯一不同的是stop 分析器增加了对删除停止词的支持默认用的停止词是 _englisht_(PS:意思是假设有一句话this is a apple并且假设this 和 is都是停止词那么用simple的话输出会是[ this , is , a , apple ]而用stop输出的结果会是[ a , apple ]到这里就看出二者的区别了stop 不会输出停止词也就是说它不认为停止词是一个term)(PS:所谓的停止词可以理解为分隔符)curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d' "analyzer": "stop", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."'输出[ quick, brown, foxes, jumped, over, lazy, dog, s, bone ]stop 接受以下参数:stopwords : 一个预定义的停止词列表(比如_englisht_)或者是一个包含停止词的列表默认是 _english_stopwords_path : 包含停止词的文件路径这个路径是相对于Elasticsearch的config目录的一个路径curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d' "settings": { "analysis": { "analyzer": { "my_stop_analyzer": { "type": "stop", "stopwords": ["the", "over"] } } }}'上面配置了一个stop分析器它的停止词有两个:the 和 overcurl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d' "analyzer": "my_stop_analyzer", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."'基于以上配置这个请求输入会是这样的:[ quick, brown, foxes, jumped, lazy, dog, s, bone ]Pattern Analyzercurl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d' "analyzer": "pattern", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."'由于默认按照非单词字符分割因此输出会是这样的:[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]pattern 分析器接受如下参数:pattern : 一个Java正则表达式默认 \W+flags : Java正则表达式flags比如:CASE_INSENSITIVE 、COMMENTSlowercase : 是否将terms全部转成小写默认truestopwords : 一个预定义的停止词列表或者包含停止词的一个列表默认是 _none_stopwords_path : 停止词文件路径curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'_", "lowercase": true } } }}'上面的例子中配置了按照非单词字符或者下划线分割并且输出的term都是小写curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d' "analyzer": "my_email_analyzer", "text": "John_Smith@foo-bar.com"'因此基于以上配置本例输出如下:[ john, smith, foo, bar, com ]Language Analyzers支持不同语言环境下的文本分析内置(预定义)的语言有:arabic, armenian, basque, bengali, brazilian, bulgarian, catalan, cjk, czech, danish, dutch, english, finnish, french, galician, german, greek, hindi, hungarian, indonesian, irish, italian, latvian, lithuanian, norwegian, persian, portuguese, romanian, russian, sorani, spanish, swedish, turkish, thai7 中文分词器:ik分词安装和部署ik下载地址:https://github.com/medcl/elasticsearch-analysis-ikGithub加速器:https://github.com/fhefh2015/Fast-GitHub创建插件文件夹 cd your-es-root/plugins/ && mkdir ik将插件解压缩到文件夹 your-es-root/plugins/ik重新启动esIK文件描述IKAnalyzer.cfg.xml:IK分词配置文件主词库:main.dic英文停用词:stopword.dic不会建立在倒排索引中特殊词库:quantifier.dic:特殊词库:计量单位等suffix.dic:特殊词库:行政单位surname.dic:特殊词库:百家姓preposition:特殊词库:语气词自定义词库:网络词汇、流行词、自造词等ik提供的两种analyzer:ik_max_word会将文本做最细粒度的拆分比如会将中华人民共和国国歌拆分为中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌会穷尽各种可能的组合适合 Term Query;ik_smart: 会做最粗粒度的拆分比如会将中华人民共和国国歌拆分为中华人民共和国,国歌适合 Phrase 查询热更新远程词库文件优点:上手简单缺点:词库的管理不方便要操作直接操作磁盘文件检索页很麻烦文件的读写没有专门的优化性能不好多一层接口调用和网络传输ik访问数据库MySQL驱动版本兼容性https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-versions.htmlhttps://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html驱动下载地址https://mvnrepository.com/artifact/mysql/mysql-connector-java演示下载安装:扩展词库:重启es后生效=》本文来自博客园作者:孙龙-程序员转载请注明原文链接:https://www.cnblogs.com/sunlong88/p/17093708.html2025-01-07 19:14:58